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Simple scaling arguments are used to determine spatial resolution achievable in time-resolved
transillumination experiments involving highly diffuse media. These arguments allow us to obtain
relationships linking target resolution at different planes inside an optically turbid slab to the gating
times of the imaging system. We show that this approach yields the same results as those obtained
previously from an approximate and rather complicated analytical derivation. In addition, we are
now able to assess the effects of scattering anisotropy on spatial resolution attainable when gating
times are so short that a constant scaling of photon transport scattering length is not appropriate.
These results should enable one to devise more accurate and simpler image reconstruction

algorithms.

1. INTRODUCTION

Spectral imaging of deep tissue structure, using nonionizing
visible and near-infrared radiation, has attracted widespread
interest as a potential method for noninvasive detection of
tumors.'~* Because light incident on most biological tissues
is multiply scattered within a distance of 1 mm and thus
rapidly becomes diffuse, conventional transillumination
techniques lead to very poor resolution of deeply lying
abnormalities.* Time-gated transillumination, by selecting
only short-path photons which have small deviation from the
optical axis, can improve the spatial resolution.

However, the improved resolution occurs at the cost of
lower detected intensity,>~” so clinically useful imaging re-
quires a balance between the intensity of the detected light
and the spatial resolution. For this reason it is important to
understand how the resolution depends on optical param-
eters, gating time, tissue thickness, and the depth at which an
object lies below the tissue surface. Moreover, it is now clear
that imaging of an optically abnormal embedded target in
otherwise normal tissue requires complex image reconstruc-
tion algorithms utilizing descriptions of the spatial spread of
photon trajectories within the tissue.> Because the resolu-
tion is defined in terms of the spatial spread, the following
work, on obtaining simple and accurate analytical relations
relating the resolution to the gating time of a transillumina-
tion imaging system, also is important to the broader ques-
tion of devising inverse imaging algorithms.

In this paper we present a new derivation that is much
simpler than methods previously used to study questions of
resolution.'®!" In addition to yielding results for interior tar-
gets which are in agreement with previous expressions, it
also provides an expression that accurately represents the
resolution for targets located near the periphery of a slab.
Furthermore, we obtain an expression that is valid at short
times, which should be applicable to the analysis of transport
through slabs whose thickness is but a few times the inverse
of the transport-corrected mean-free path. By assuming that
photon diffusion inside the tissue sample is isotropic, we first
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derive simple expressions that adequately represent transillu-
mination time-resolved imaging resolution (with coaxial
source and detector) over the whole range of depths. We then
present an analysis of spatial resolution for the more general
case of anisotropic random walks, valid for short times
where constant scaled cross sections generally cannot be
used.

Il. ANALYSIS FOR AN ISOTROPIC SCATTERING
MODEL

As in our previous work,'® we formulate the problem in
terms of a photon random walk on a discrete rectangular
lattice having isotropic transition probabilities, and later con-
vert to real experimental parameters. Time and position are
given, respectively, in terms of the number of steps » and the
dimensionless indices {x,y,z}. Here we consider that the
source and detector are pointlike, which means that the finite
size of the source and detector are not taken into account;
effects of the size of the detector are analyzed elsewhere
(see, e.g., Ref. 12).

The principal quantity for determining both the resolution
and intensity of time-resolved imaging is the probability
T'(p,An|z) that a photon emerging on the opposite side of the
slab of thickness L after a total of L+ An steps (An is the
“‘excess number of steps’”) will, as it crosses the plane at
depth z below the sample surface, be at a radial distance p
from the {x,y} axis passing through the source (i.e., the point
of photon insertion). We neglect the possible refractive index
mismatch between the tissue and its surrounding media, so
the interfaces of the slab are taken to be nonreflecting. To a
first approximation this is a valid assumption because our
main goal is to describe the resolution associated with rela-
tively short photon paths; reflected photons, if important,
contribute only to intensities associated with photons which
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move for longer times within the tissue. The expression for
I'(p,An|z) represents the point spread function (PSF) of the

corresponding time-gated image of objects at depth z.
An analytical expression, based on random walk
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theory,''* previously was derived for this characteristic at

the midplane.!® Derived for the case of an equivalent isotro-
pic scattering medium, it has the following rather compli-
cated form:
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However, it was shown by computer curve fitting that these
PSFs are well represented by Gaussian distributions, whose
standard deviations, {0}, can be taken as measures of spatial
resolution. These Gaussian fits lead to a simple empirical
formula for o

o=0.406(An)"2, (3)

when ¢ is expressed'® in units of mean effective scattering
length (i.e., u; !). Because the dimensionless random walk
parameters An, p, L, and ¢ can be related to actual time and
space variables r and ¢ through the scattering coefficient w,
as

p= el oty @)
v2 V2

(where d is the actual thickness, ¢ is the speed of light, and

the quantity A¢ is the excess time by which a photon is

delayed in reaching the detector when compared with the

direct time of flight through the slab), the standard deviation

may be written in terms of experimentally accessible param-

eters as'”
A\ 12
) . (5)
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In a related study,'' an empirical formula relating resolu-
tion as a function of depth to the resolution at the half-plane
[see Eq. (3)] also was found, viz.,

a(z)y=0o(L2) fo(z), (6)

where fo(z)=1—2.35(Z*—0.5)2, and Z* is the fractional
depth defined as Z*=(z—1)/(N—1). This formula agrees
well with results of numerical calculations for a broad range
of depths. However, discrepancies between Eq. (6) and the
{o} obtained by fitting the generated expressions by Gauss-
ians are significant near the input and output surfaces. We
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now show that the empirical functional form given by Eq. (6)
indeed is correct. Moreover, we derive an improved, analytic
expression for fy(z) that is valid even near the boundaries of
the slab.

We first note that the mean-square distance (Ar?) traveled
in an n-step isotropic random walk is (Ar?) = n, where (Ar?)
is expressed in units of root-mean-square of the run length
distribution.'® In the case of an isotropic three-dimensional
medium, the mean-square distances projected onto the x,y,z
axes evidently are equal to (Ax*)=(Ay%)=(Az>)=n/3. It
follows that, for photons that emerge from the output slab
surface at z=L after An extra steps, the mean-square dis-
placement in a direction parallel to slab surface when at the
depth 7 is

(Ax*)|,=3(An)(z/L),
In particular, we have for the midplane (z=L/2),
(Ax*)|Lp=#(An). 8

If the number of random steps is large, then, according to the
central-limit theorem, the distribution of photon displace-
ments in any direction parallel to the slab surface is close to
Gaussian

for z<<L/2. N

(Ax)?

d(Ax)~exp| — sk 9)

We observe that ¢(Ax) can be considered as the trans-
mission directivity pattern ¢,(Ax) of the photon source.'®
The PSF of any imaging process can be represented as a
product of transmission and reception directivity patterns

PSE,= ¢,(Ax)- ¢,(Ax). (10)

The function ¢ (Ax) is easily determined in our case, since
the directivity pattern is a reciprocal process having the same
form for transmission and reception. (When the input and
output points are interchanged the random walk is exactly
reversible.) However, the expected dispersions of both pat-
terns prove to be the same only in the case of the slab mid-
plane z=L/2. In this particular case, the resulting standard
deviation of the PSF in the x direction, when expressed in
terms of mean run length, is equal to

ol 1n= (D) (An)"?=0.408(An)"2. (1)
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FiG. 1. Depth dependence of PSF width as a function of Z* defined as
(z—1)/(L—1). Circles are the widths, o, of Gaussian fits to the PSFs given
in Ref. 11. The solid line is the functional form f;(Z*) given in Eq. (13),
and the dashed line is the empirical fit obtained in Ref. 11, f((Z*) [see Eq.
(6)]-

This formula is the same as found earlier'® from the curve-
fitting procedure, except for a negligible difference in the
numerical coefficient (0.406, which was established empiri-
cally, instead of the value 0.408 obtained above from theo-
retical considerations).

We also can improve the empirical relation given by Eq.
(6). First note that, from Eq. (7), we see that, for the recep-
tion directivity pattern, one should replace z in the formula
for (Ax?)|, by L—z (the distance between the considered
interior plane and the detector). Referring to Eq. (10) we
then see that, for arbitrary depth z, the PSF can be expressed
as

PSF,(z)~exp[ — (x2(1KAx%)|,+ 1{AxH)|, -, 0]  (12)

The standard deviation (which will be greatest at the mid-
plane) is thus given at arbitrary depth as

o(z)=o(L2)-f(Z*), (13)

where, as expected, f,(Z*)=2(Z*)"*(1-2*)' is sym-
metrical relative to the midplane. The function f(z/L) is
represented in Fig. 1, where numerical data!! are also shown
for comparison. Agreement is very good (not worse than
3%) over the whole range of depths. Also shown (dotted
line) is the empirical approximation given by Eq. (6).

lll. EFFECT OF ANISOTROPIC SCATTERING

The anisotropy coefficient, g, in diffusionlike processes is
defined as the mean cosine of the azimuthal scattering angle,
6, viz.,
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JoP(6)cos 6 sin 8 do
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g={(cos 0)= (14)
The value g =0 corresponds to isotropic scattering, and g =1
holds for complete forward scattering. Diffusionlike theories
are usually derived for isotropic scattering and the effects of
anisotropy are taken into account by defining a ‘‘transport-
corrected scattering length’” dependent on g. For example, in
the diffusion approximation of photon transport theory, the
transport-corrected scattering cross section is defined as u,
= uy(1 — g), regardless of scattering length distribution.

In previous work we have shown that the scaling relation-
ships for anisotropic random walks depend on the probability
distribution of the scattering lengths.!> A general relationship
between the mean square displacement and the number of
steps undergone by the random walker was obtained'” as the
following function of g,

2 (B g) 2, ,e(1-¢g*)
((Ax)2)—§An(T+<l>21—_‘gj —§<l>2(1—_g)2—,

where (I) is the first moment (i.e., the mean) and (/%) is the
mean-squared value of the run length distribution. Note that
for isotropic random walks, for which g=0, a considerable
simplification occurs [viz., ((Ax)?)=An(I*)/3].

For a Poisson distribution of unit mean scattering length,
which corresponds to a random distribution of scattering
centers with the medium with (/)=1 and (/*>)=2, one finds

1
1-¢
where f(g,An) is defined as

2
((Ax)%)= 3 An( )f(g,An), (16)

g(1—g""
f(g,An)=|1 =g)An|' (17)
At very large An, where f—1, one thus obtains
Ax?)y= 2 An 18
<( X )>_~ 31-g . ( )

As previously mentioned [see Eqs. (2)—(5)], one needs to
relate the standard deviation, o, to a measure of resolution
given in terms of experimentally accessible parameters. If we
were to start with Eq. (18) we would obtain an expression
identical to that given in Eq. (5), except that u, would be
replaced by the familiar transport-corrected scattering cross
section u, [see discussion following Eq. (14)]. However, it
is evident from Egs. (16) and (17) that the scaling depends in
a complicated way on the number of steps An taken by the
photons. If one merely were to scale the scattering coefficient
u by (1—g) in Eq. (4) to obtain an equivalent isotropic
diffusion process, there would be an underestimation of the
‘‘transport-corrected’” mean square displacement at short
times. Thus one must start with the scaling of An obtained
from Eq. (16), which is now (1 —g)/f(g,An) instead of (1
—g). However, (Ax) and An in Eq. (16) are dimensionless
parameters. If one expresses the resolution in terms
#(1—g) (variable used in diffusionlike transport pro-
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FiG. 2. Spatial resolution (filled circles with error bars), Ax,, as a function
of excess transit time, A¢, calculated from the edge response function as
reported in Ref. 17. Theoretical predictions using Eq. (19) without the cor-
rection factor (dashed line), and using the correction factor for short excess
transit time (solid line) are also shown. The optical parameters of the tissue
phantom are'” g, =10 mm~', ¢=0.225 mm/ps, and g =0.92.

cesses), and then uses the new scaling for An in real vari-
ables according to Eq. (4), one gets

Ax0=0.408( cAt/ u(l—g)

g(1— gus(l —g)cAt)
(1-g) mscAt

One can see from Eq. (19) that, for very large At, the scaling
u, = ms(1—g) holds. In addition, Eq. (19) shows that, in
reality, poorer resolution is obtainable at small Ar than is
predicted by using the asymptotic expression for the scaling
based on Eq. (18).

We have compared resolutions obtained from time-gated
transillumination experiments'’ with the newly derived ex-
pression given in Eq. (19). In these experiments u,=10
mm~ !, the refractive index of the medium is 1.33 which
yields ¢ =0.225 mm/ps, and g=0.92 so &, = 0.8 mm™'. Ex-
perimental resolutions were calculated from the edge re-
sponse functions of the abrupt edge of an opaque mask em-
bedded in the middle of the slab (51 mm thick). The
resolving power of the imaging system was set to 2.910,
which leads to a factor 1.19 (instead of 0.408) in Eq. (19).
Details of the experimental setup and the procedure for cal-
culating actual resolutions as a function of the gating times
are reported elsewhere.!” Experimental results are presented
in Fig. 2 as circles with error bars. The upper curve (solid
line) is calculated according to Eq. (19) with the factor 1.19,
while the lower curve (dashed line) represents the same ex-
pression when the quantity is square brackets is set equal to
1, i.e., when constant scaling of the scattering coefficient is
used. Clearly, a better fit of the data is obtained when the
effect of anisotropy is taken into account. Although for very
short gating times (less than 50 ps, corresponding to An=~9)
the new approach stiil gives a poor description of the spatial

X/ 1—

1”2
) . (19)
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resolution, this behavior may reflect the fact that the corre-
sponding photons do not have enough time to follow diffu-
sivelike paths inherent to the model used in the analysis pre-
sented above.

IV. COMMENTS

We have shown here how expressions for the resolution
achievable in diffuse transillumination imaging, previously
derived by semi-empirical arguments,' can be obtained from
first principal considerations of photon random walks.'® In
addition to substantiating previous theory,'®!” we here de-
rived a modification that accounts for the directional persis-
tence of a photon that arises from anisotropic scattering. The
resulting expression gives yet better agreement with experi-
mental results, for all except very short times.

We also note that the implementation of image recon-
struction algorithms for embedded tissue objects requires a
description of the spread of photon paths within the tissue.
The perturbation in those paths caused by the presence of an
abnormal target is closely related to the point spread function
(PSF) of light traveling through the medium. Our simple
scaling arguments enables replacement of the complicated
PSF expression of Eq. (1) by its Gaussian counterpart, as
given in Eq. (10). This can enormously simplify image re-
construction algorithms. Our analysis should enable one to
correctly account for effects of anisotropic diffusion.
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